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We analyze the properties of a dual-beam trap of orthogonally intersecting beams in the geometrical optics regime.
We derive analytical expressions for the trapping location and stability criteria for trapping a microparticle with
uncollimated Gaussian beams. An upper limit for the beam waist is found. Optical forces and particle trajectories
are calculated numerically for the realistic case of a microparticle in intersecting liquid-core waveguides. © 2013
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1. INTRODUCTION
The ability to control the external degrees of freedom of a
massive particle with massless photons in a beam of light re-
mains one of the most fascinating concepts in optical physics.
The field was initiated by Ashkin’s seminal proposal on all-
optical trapping of neutral particles in a dual-beam trap
(DBT) of opposing laser beams [1]. Subsequently, a single-
beam optical trap created by a tightly focused beam was
demonstrated using both microspheres and atoms [2,3]. Using
single-beam “laser tweezers” for manipulating individual
biological particles is now standard practice in countless
laboratories, where biological studies represent the bulk of
optical trapping applications [4–6]. In addition to tweezers,
a number of other trapping methods have been developed that
involve phase and amplitude shaping of an optical field [7–9]
or rely on the combination of light with other forces, including
mechanical [10], electrical [11], and magnetic [12]—all
expanding the concept of the single-beam trap (SBT). A large
body of literature on both theory and experiments of these
optical traps over a wide range of particle sizes and materials
exists [13,14].

Most recently, an increasing trend to implement particle
traps in integrated photonic structures has emerged [15–20].
While photonic integration is attractive due to the potential of
building compact and easy-to-use devices for particle manipu-
lation, the implementation of the standard single-beam
tweezer trap is extremely challenging because the creation
of the required large numerical apertures is concomitant with
significant propagation losses in waveguides whose dimen-
sions do not change adiabatically. The ideal photonically
integrated all-optical trap would therefore rely on collimated
beams with constant beam (“mode”) dimensions. One exam-
ple of such a trap is the loss-based DBT that uses counter-
propagating beams in the presence of waveguide loss [15].
Another attractive alternative is to use two crossed beams.

Such a geometry has been demonstrated in the Rayleigh re-
gime for the evaporative cooling of atoms [21]. Several groups
have used this orthogonal geometry for experiments on atoms
including cooling and Bose–Einstein condensate formation
[22,23]. However, many applications in biology and related
fields utilize dielectric beads and cells of micrometer-scale
dimensions. Therefore, we analyze an all-optical trap using
orthogonally intersecting beams in the geometrical optics
regime. Expressions for the trapping location and stability
criteria that qualitatively differ from the atom trapping limit
are derived analytically. Simulations of particle capture and
trapping under realistic conditions of a micrometer sized par-
ticle in intersecting liquid-core waveguides show that the
orthogonal beam trap (OBT) is ideal for implementation in
microfluidic channels without the need for strongly focused
or diverging beams.

2. THEORY
The physical principle responsible for achieving trapping in all
three all-optical traps is shown in Fig. 1. In the original Ashkin
traps [Figs. 1(a) and 1(b)], trapping along the z direction is
accomplished by balancing scattering and gradient forces
(SBT) or opposing scattering forces (DBT). Confinement in
the other dimensions is provided by gradient forces. In the
OBT, however, trapping in both the x and z directions is
achieved by balancing the gradient force from one beam with
the scattering force from the other beam. While a first look at
the beam geometry might lead us to expect the particle to be
pushed along a diagonal trajectory, closer inspection reveals
that as a particle is pushed out of the center of Beam 2 by
Beam 1 along the z direction, a restoring gradient force starts
building up that reduces the net force. Trapping may occur at
the point where the two forces balance each other. This sit-
uation is qualitatively illustrated in Fig. 1(d). Although the
scattering force from Beam 1 has a Gaussian shape along
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the x direction [see Fig. 1(c)], for any given x position its value
is constant. The vector sum of FS1 and FG2 creates a potential
along the z direction that can be sufficiently deep to trap a
particle [see Fig. 4(a) for a specific example]. A similar analy-
sis is valid for the x direction with the roles of Beams 1 and 2
reversed.

In order to obtain more quantitative insight into the details
of this process, we assume Gaussian beams with equal power
and beamwidths and consider trapping in the ray optics (large
particle) regime. Specifically, we assume identical, collimated
Gaussian beams of the form

I1�x� � I0 · e−γx
2
; I2�z� � I0 · e − γz2; (1)

with beam parameter γ � 2∕w2
0, where w0 is the Gaussian

beam waist. This results in scattering and gradient forces
are given by

FS1�x� � kS · I1�x� � QS ·
A
c
· I1�x�; (2)

FG1�x� � kG · j∇⃗I1�x�j � 2γkG · x · I1�x� � QG�x� ·
A
c
· I1�x�;

(3)

where kS and kG are constant coefficients, A is the particle
cross section, c is the vacuum speed of light, and QS and
QG are the usual prefactors for trapping in the ray optics limit
[24]. Equivalent equations apply to Beam 2 with an exchange
of the coordinates. The necessary force balance condition for
particle trapping is thus provided by

FS1�x� � FG2�z�; (4)

along the z direction and

FG1�x� � FS2�z�; (5)

along the x direction. By combining Eqs. (4) and (5), we can
obtain the single equilibrium position of the OBT as

xT � zT � kS
kG

1
2γ

� kS
kG

w2
0

4
; (6)

independent of the power in the beams. Figure 1(d) illustrates
the equilibrium condition [Eq. (4)]. Due to the beam sym-
metry, a change in beam power will rescale both lines in
Fig. 1(d) in such a way that the intersection of both lines
and thus the trapping location determined by Eq. (6) remains
the same. The scattering force from Beam 1 is independent of
z for fixed x and assuming a collimated beam. It equals the
gradient force created by Beam 2 in two locations, but only
the one closer to z � 0 results in a restoring force required
for trapping. Thus, the trapping point location zT has to be
closer to z � 0 than the location of maximum gradient
force xG;m � zG;m � 1∕

�����

2γ
p � w0∕2. This leads to the stability

condition

w0 ≤ 2
kG
kS

: (7)

Equation (7) represents an important new feature of the
OBT: trapping can occur for unfocused (collimated) beams,
but their beam waist must be small enough to create suffi-
ciently strong gradient forces to compensate the scattering
force from the other beam. In addition, we need to take into
account that the magnitude of the scattering force depends on
the coordinate transverse to the beam direction, e.g., for
Beam 1 propagating along z, we have FS1 � FS1�x�. There-
fore, the scattering force at the trapping point �xT ; zT � will
be diminished from its on-axis maximum. This fact is repre-
sented in Fig. 2(a), which shows the dependence of the scat-
tering force along x from Beam 1 and the gradient force along
z from Beam 2. The figure illustrates that at the equilibrium
point, the scattering force from one has to be diminished
enough to be compensated by the gradient force from the
other beam.

3. APPLICATION
The force curves of Fig. 2(a) were calculated for the specific
example of a collimated Gaussian beam (beam waist
w0 � 0.75 μm; λ � 532 nm, P � 60 mW) and a microbead par-
ticle (index 1.4; diameter d � 1 μm). The gradient force from
Beam 2 is plotted along z, and the scattering force from Beam
1 is plotted along x. We will use this example as the starting
point for illustrating the trapping properties of the OBT. In
order to calculate realistic forces, we used a formalism for
analytical calculation of trapping forces in loosely focused
and collimated beams [25]. An infinite number of reflections
of a collimated photon stream at the interfaces of a lossless
dielectric sphere were considered, and the resulting equations
(Eqs. (17) and (18) in [25]) were integrated numerically over
all incident angles using MATLAB. The dependence of the gra-
dient and scattering forces at the two relevant locations
marked with green arrows in Fig. 2(a) (maximum gradient
and maximum scattering forces) are displayed as a function
of particle diameter in Fig. 2(b). In the limit of small particles
(d < 2w0), the calculated forces (symbols) show good agree-
ment (R value > 0.98) with parabolic fits (lines) based on the

Fig. 1. (a) Single-beam tweezer trap (FG, gradient force; FS , scatter-
ing force), (b) dual-beam trap (Beam 1 is shown in red and Beam 2
is shown in blue to aid in identifying from which beam these forces
originated), (c) OBT, and (d) z-dependent forces at fixed x coordinate
highlighted in (c); trapping occurs at zT , where the gradient force from
Beam 2 is restoring.
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simple relations of Eqs. (2) and (3). In the figure, the stability
condition [Eq. (7)] corresponds to the requirement that the
curve for the scattering force at the maximum gradient force
location be below that for the maximum gradient force, or
equivalently QS < QG. For our specific parameters, this con-
dition is fulfilled for d > 0.44 μm. Once the particle size is
comparable to or larger than the beam waist, the scattering
force curves deviate from the simple square law of Eq. (2)
as expected, since the incident power no longer depends on
the particle size once the entire beam hits the particle, and
therefore the incident power is constant. As Fig. 2(b) shows,
the forces can still be calculated numerically and fulfill the
conditions for stable trapping, despite the deteriorating agree-
ment between the parabolic fits and the calculated forces in
that range. At the lower end of the displayed particle size
where d ∼ λ, the Mie scattering regime is approached, but the
geometric optics approximation can still be expected to pro-
duce acceptable results, especially for collimated beams [26].

Next, we carried out complete dynamic simulations of
the particle trajectory under realistic conditions. Again using
the beam parameters described above and water as a host
medium, the trajectory was calculated by numerically solving
the equation of motion shown below in the presence of optical
(gradient and scattering) and viscous Stokes drag forces
at room temperature (where η is the dynamic viscosity;

Brownian motion was neglected, since fluctuations in the
article location are much smaller than the particle diameter
for the parameters considered):

mz̈ � Foptical�z� � Fdrag�z� � FS1�z� � FG2�z� � 3πηd_z; (8)

mẍ � Foptical�x� � Fdrag�x� � FS2�x� � FG1�x� � 3πηd _x: (9)

Figure 3(a) shows the trajectory with all dimensions shown
to scale. The particle is initially propelled along the center
of Beam 1 [as shown in red; see also Fig. 1(c)] under the in-
fluence of gradient and scattering forces. Once it enters the
channel intersection, it falls into the OBT that is set up by
Beams 1 and 2 and comes to a stop at the trapping point
�xT ; zT � � �0.1 μm; 0.1 μm�. Figure 3(b) provides a different
illustration of this process by displaying the sum of the mag-
nitudes of all forces in the x and z directions around the trap-
ping point. In this representation, a zero value indicates an
equilibrium point (no net force on the particle). It can be seen
that the optical forces are confined to the beams, and that
there is a single point with zero total force at the trapping
point close to the center of the intersection. The double peak

Fig. 2. Analytically calculated forces on microbead in identical collimated beams. (a) Gradient force along z from Beam 2 and scattering force
along x from Beam 1 versus transverse coordinate; curves need to intersect between the origin and location of maximum gradient force to form a
stable trap [locations of maximum gradient and maximum scattering force used for (b) are shown with green arrows]. (b) Particle size dependence
of forces at relevant points (symbols) and fits with second-order polynomial (lines).

Fig. 3. (a) Calculated particle trajectory exhibiting trapping at beam intersection (all dimensions to scale), (b) total force at the beam intersection,
trapping point (black), w0 from Beam 1 (red), and w0 Beam 2 (blue) shown with dotted lines, and (c) time dependence of particle velocities along
x and z showing acceleration due to Beam 2, followed by trapping.
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structures that are visible along both x and z outside the beam
intersection region represent the locations of the maximum
gradient force for each beam.

Finally, Fig. 3(c) represents the particle velocities alongboth
the x and z directions as a function of time. After an initial
period of constant z velocity under the action of the scattering
force fromBeam1, the particle briefly speeds up as it enters the
intersection region and experiences an acceleration by the gra-
dient force from Beam 2, which points along the positive z
direction for z < 0. After it passes z � 0, the particle starts
slowing down as the gradient force changes sign, and falls into
the trapping location. At the same time, the velocity along x is
zero until the particle enters Beam 2; at that point there is an
acceleration due to FS2, followed by a deceleration due to FG1.

The optical potential along the z direction (at x � xT ) is
shown in Fig. 4(a). It was calculated by integrating the sum
of the two forces FG2�z� and FS1�z� [see Fig. 1(d)] along z
for the specific parameters of our example. The resulting po-
tential has an overall slope caused by the constant scattering
force of Beam 1 along with a potential well created by the
presence of the gradient force from Beam 2, as discussed in
Fig. 1(d) above. As seen in the figure, the confining depth
of this potential is ΔW � 1.9 × 10−18 J � 12 eV, which is
sufficient to result in stable trapping in agreement with the
dynamic simulations. Finally, we carried out an extended sta-
bility analysis by investigating the trapping condition [Eq. (7)]
over a wider range of parameters for particle diameters and
beam waists. Figure 4(b) shows the resulting stability profile,
in which regions of stability and instability are separated by a
line. The linear relation implies that trapping is possible at
a beam waist of up to 2.4 times the particle diameter for
the given set of parameters. For diameters approaching λ, the
stability analysis is only approximate as the Mie regime is
reached. For beams with a larger waist, the maximum gra-
dient force is not large enough to compensate for the scatter-
ing force exerted by the other beam, and the particle will be
deflected but not trapped.

The OBT can be implemented in several ways. In free
space, a weakly focused Gaussian beam can be used to create
the beam waist described above. At λ � 532 nm, such a beam
would have a divergence angle of 9.7° and a focal depth of
8.84 μm. As a result, the beam waist at the trapping location
(0.1 μm, 0.1 μm) has increased by only 0.026% from its mini-
mum value, and the beams can be assumed to be collimated
over the region of interest. The OBT is even more attractive
for integrated photonic structures in which conventional traps

based on divergent beams cannot be implemented [15,17]. A
fundamental guided mode propagating along a planar wave-
guide corresponds in excellent approximation to a collimated
Gaussian beam [27]. Mode diameters on the order of 0.5–3 μm
can easily be achieved in liquid-core waveguides that are large
enough to contain microbeads. The parameters from the ear-
lier application are one possible option for a liquid core anti-
resonant reflecting optical waveguide. Such waveguides can
be arranged to create intersecting channels that are precisely
aligned and have negligible optical loss over the length scales
of interest [28,29].

4. CONCLUSION
In summary, we have introduced a new (to our knowledge)
way to trap microparticles using an all-optical particle trap
created by orthogonally intersecting, collimated Gaussian
beams. This trap creates a combination of gradient and scat-
tering forces that fundamentally differs from the canonical
SBTs and DBTs. The properties of the trap were evaluated
analytically and numerically, and it was shown that stable
trapping of microparticles in the ray optics regime is possible.
Extension of the analysis to asymmetric trapping beams is
possible but is beyond the scope of this article. The OBT
has a number of unique properties [14]. Since it can operate
with collimated beams, the trap is ideal for implementation in
integrated photonic devices, in particular liquid-core wave-
guides. The ability to use collimated beams avoids additional
problems with nonuniform fluid flow in microchannels of
changing dimensions. In addition, the trap is self-loading in
the sense that a particle is pushed rapidly toward the trapping
point by one beam before being captured by the second. The
ability to trap particles with refractive indices on the order of
1.4 in a liquid environment makes this approach very attrac-
tive for use with biological particles such as small cells and
avoids heating problems associated with highly focused
beams in SBTs. Finally, the trap also exhibits unique param-
eter dependence for stable trapping under a given set of con-
ditions. This may be used to select specific particles from a
mixture. Overall, the OBT adds a new approach to the rapidly
growing number of techniques for optical particle manipula-
tion in integrated photonic and optofluidic environments.
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